

Power Conversion

Shipboard Power System Fundamentals

Revision of 8 January 2026

Dr. Norbert Doerry

<http://doerry.org/norbert/MarineElectricalPowerSystems/index.htm>

© 2026 by Norbert Doerry

This work is licensed via: CC BY 4.0 (<https://creativecommons.org/>)

Essential Questions

What types of power conversion equipment are used onboard ship and why?

Understand

What components comprise power conversion?

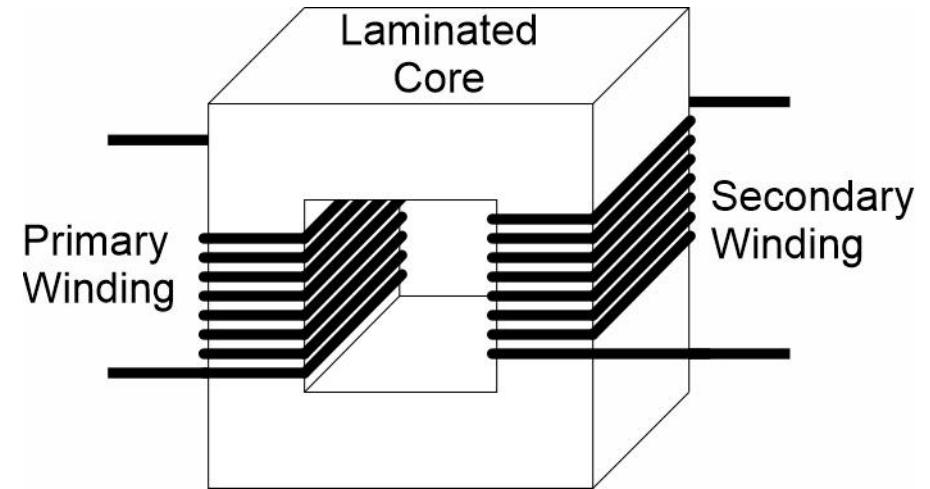
Remember

What are the sources of losses in power conversion?

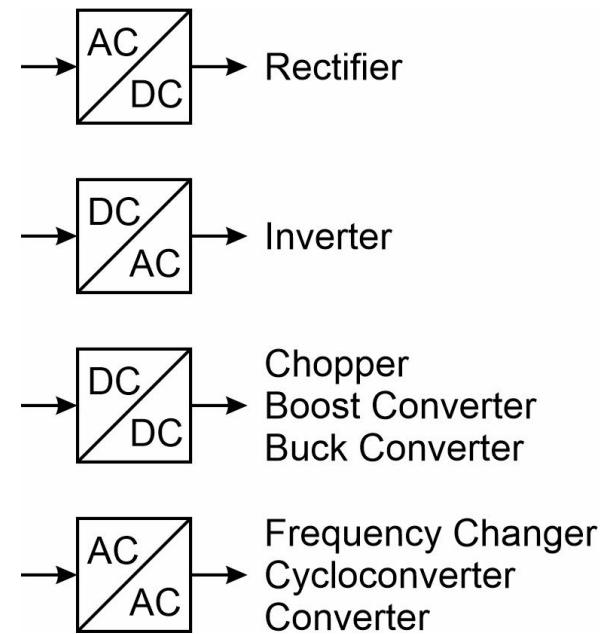
Understand

How are losses calculated using an efficiency curve?

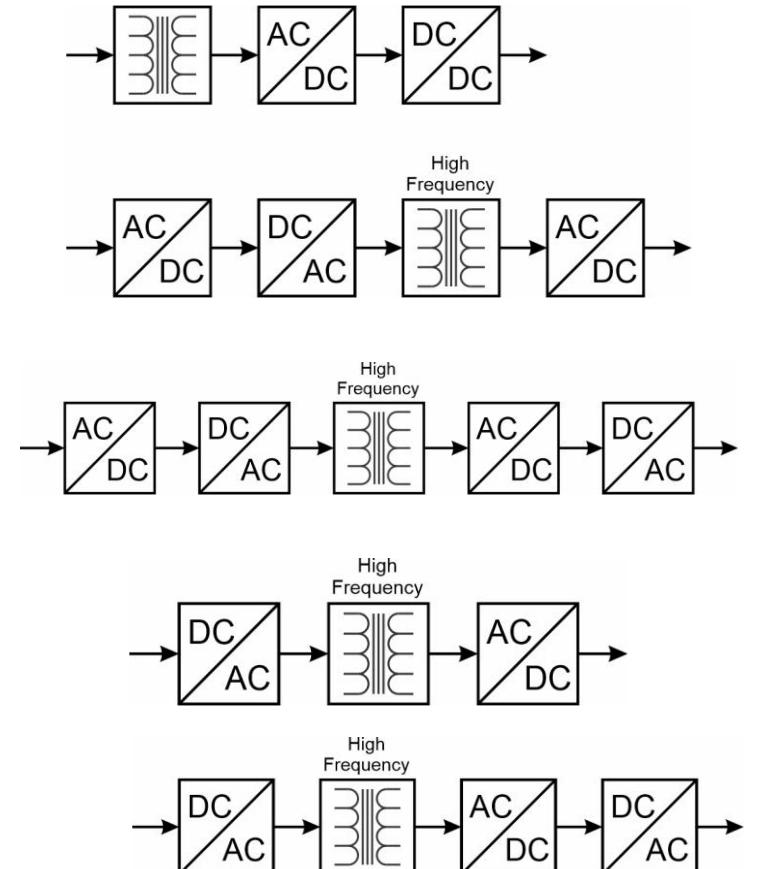
Apply


Introduction

- Power conversion equipment have two or more power system interfaces
- Each interface may allow power to ...
 - Flow in exclusively
 - Flow out exclusively
 - Flow in either direction
- Power balance
 - Power flowing in = Power flowing out + Internal losses + Power flowing into internal energy storage – Power flowing out of internal energy storage
- Types
 - Transformers
 - Power electronic converters
 - Motor Generator Sets


Transformers

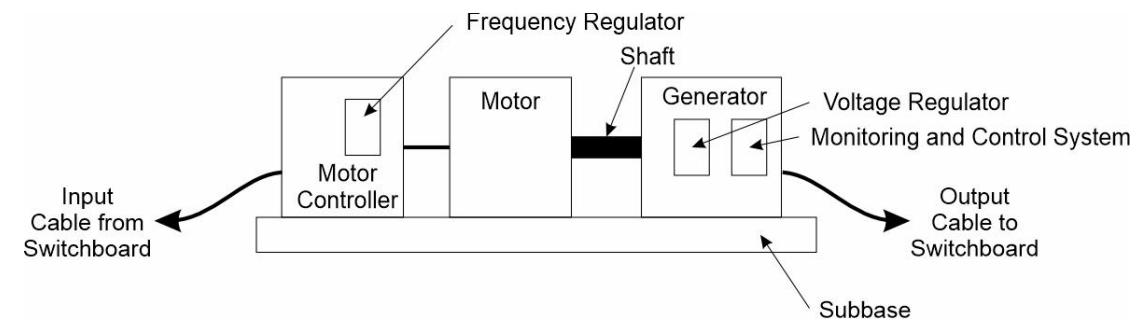
- Simple form of power conversion for a.c. systems.
 - Input and output voltages may be different.
 - Provides isolation between the primary and secondary winding.
 - Ground faults on one winding do not result in ground fault on the other winding.
 - Limits common-mode currents between primary and secondary windings.
- Three phase transformers often created by interconnecting three single phase transformers.
- System Integration issues
 - Voltage regulation – Secondary voltage drops as load increases
 - Can result in excessive voltage drop at loads.
 - Fault current – Secondary fault current can be very large.
 - May exceed interrupting capability of secondary circuit breakers.


Power Electronic Converters

- Rectifier
 - Converts a.c. to d.c.
- Inverter
 - Converts d.c. to a.c.
- Chopper, Boost Converter, Buck Converter
 - Converts d.c. to d.c
- Frequency Changer, Cycloconverter, converter
 - Converts a.c. to a.c.

Multi-Stage Power Electronic Converter Topologies

- Usually used to provide isolation between the input and power terminals
 - Limits extent of ground faults.
 - May limit common mode currents.
- High Frequency Transformers decrease space and weight; and are usually more efficient than 60 Hz transformers
 - But usually require additional power electronics that reduce efficiency and require space and weight.



Power Electronic Converter Integration

- Efficiency
 - Part load efficiency should be accounted for in system calculations.
- Cooling.
 - Liquid cooling may require additional systems.
- Frequency content of input current waveforms.
- Common mode voltages and currents.
- Limited inrush current capability at output.
 - May require soft starting of loads or use of variable speed drives.
- Limited fault current capability at the output.
 - May require special fault protection strategy.

Motor Generator

- Once common, now mostly replaced by power electronic converters
 - 60 Hz to 400 Hz Frequency Changer.
- Components
 - Motor Controller with Frequency Regulator
 - Motor
 - Generator
 - Voltage Regulator
 - Monitoring and control system
 - Subbase

Losses and Efficiency

- No load losses.
 - Magnetize electromagnetic cores.
 - Cooling components (such as fans).
 - Control equipment.
- Losses associated with output power.
 - Resistive losses of components.
 - Voltage drops across semiconductors.
- Efficiency is equal to the output power divided by input power.
 - Efficiency is usually 0 at zero load due to no load losses.
 - The efficiency vs output curve is very nonlinear at low power levels.
 - Efficiency is usually only provided in datasheets at several power levels (typically for output power levels above 50% of rated power).
 - Estimating efficiency below 50% of rated power usually requires extrapolation and is prone to error.

D.C. output converter efficiency extrapolation

$$P_{Loss} = P_{noLoadLoss} + R_{loss} I_{out}^2$$

P_{loss} = Losses in the converter (W)

$P_{noLoadLoss}$ = Losses at no load (W)

R_{loss} = Effective resistance for determining losses (ohms)

I_{out} = Output current (A)

$$\eta = \frac{\frac{P_{out}}{P_{rated}}}{\frac{P_{rated}R_{loss}}{V_{out}^2} \left(\frac{P_{out}}{P_{rated}} \right)^2 + \frac{P_{out}}{P_{rated}} + \frac{P_{noLoadLoss}}{P_{rated}}}$$

P_{out} = Output power (W)

P_{rated} = Rated Output Power (W)

V_{out} = Output Voltage

Data sheets may provide $\frac{P_{noLoadLoss}}{P_{rated}}$ and the efficiency ($\eta_{RatedPower}$) at rated power.

$$\frac{P_{rated}R_{loss}}{V_{out}^2} = \frac{1}{\eta_{RatedPower}} - \left(1 + \frac{P_{noLoadLoss}}{P_{rated}} \right)$$

If the data sheet does not provide $\frac{P_{noLoadLoss}}{P_{rated}}$

but does provide the efficiency at several output power, then the pseudo-inverse may be used to develop estimates for:

$$\frac{P_{noLoadLoss}}{P_{rated}} \text{ and } \frac{P_{rated}R_{loss}}{V_{out}^2}$$

Doerry, Norbert, and Mark A. Parsons, "Modeling Shipboard Power Systems for Endurance and Annual Fuel Calculations," SNAME J Ship Prod Des (2023)

A.C. output converter efficiency extrapolation

$$\eta = \frac{\frac{P_{out}}{S_{rated}}}{\frac{S_{rated}R_{loss}}{3V_{out}^2} \left(\frac{1}{PF}\right)^2 \left(\frac{P_{out}}{S_{rated}}\right)^2 + \frac{P_{out}}{S_{rated}} + \frac{P_{noLoadLoss}}{S_{rated}}}$$

where:

S_{rated} = Rated Output Apparent Power (VA)

PF = Power Factor

$$\frac{P_{Loss}}{S_{rated}} = \frac{P_{noLoadLoss}}{S_{rated}} + \frac{S_{rated}R_{loss}}{3V_{out}^2} \left(\frac{S_{out}}{S_{rated}}\right)^2$$

where:

S_{out} = Output Apparent Power (VA)

If efficiency is provided at several points, pseudo-inverse can be used to determine

$$\frac{S_{rated}R_{loss}}{3V_{out}^2} \text{ and } \frac{P_{noLoadLoss}}{S_{rated}}$$

Doerry, Norbert, and Mark A. Parsons, "Modeling Shipboard Power Systems for Endurance and Annual Fuel Calculations," SNAME J Ship Prod Des (2023)